27 research outputs found

    Sensor-AssistedWeighted Average Ensemble Model for Detecting Major Depressive Disorder

    Get PDF
    The present methods of diagnosing depression are entirely dependent on self-report ratings or clinical interviews. Those traditional methods are subjective, where the individual may or may not be answering genuinely to questions. In this paper, the data has been collected using self-report ratings and also using electronic smartwatches. This study aims to develop a weighted average ensemble machine learning model to predict major depressive disorder (MDD) with superior accuracy. The data has been pre-processed and the essential features have been selected using a correlation-based feature selection method. With the selected features, machine learning approaches such as Logistic Regression, Random Forest, and the proposedWeighted Average Ensemble Model are applied. Further, for assessing the performance of the proposed model, the Area under the Receiver Optimization Characteristic Curves has been used. The results demonstrate that the proposed Weighted Average Ensemble model performs with better accuracy than the Logistic Regression and the Random Forest approaches

    Emotion AI-Driven Sentiment Analysis: A Survey, Future Research Directions, and Open Issues

    Get PDF
    The essential use of natural language processing is to analyze the sentiment of the author via the context. This sentiment analysis (SA) is said to determine the exactness of the underlying emotion in the context. It has been used in several subject areas such as stock market prediction, social media data on product reviews, psychology, judiciary, forecasting, disease prediction, agriculture, etc. Many researchers have worked on these areas and have produced significant results. These outcomes are beneficial in their respective fields, as they help to understand the overall summary in a short time. Furthermore, SA helps in understanding actual feedback shared across di erent platforms such as Amazon, TripAdvisor, etc. The main objective of this thorough survey was to analyze some of the essential studies done so far and to provide an overview of SA models in the area of emotion AI-driven SA. In addition, this paper o ers a review of ontology-based SA and lexicon-based SA along with machine learning models that are used to analyze the sentiment of the given context. Furthermore, this work also discusses di erent neural network-based approaches for analyzing sentiment. Finally, these di erent approaches were also analyzed with sample data collected from Twitter. Among the four approaches considered in each domain, the aspect-based ontology method produced 83% accuracy among the ontology-based SAs, the term frequency approach produced 85% accuracy in the lexicon-based analysis, and the support vector machine-based approach achieved 90% accuracy among the other machine learning-based approaches.Ministerio de Educaci贸n (MOE) en Taiw谩n N/

    Deep Learning Assisted Neonatal Cry Classification via Support Vector Machine Models

    Get PDF
    Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy

    An Efficient Hybrid Fuzzy-Clustering Driven 3D-Modeling of Magnetic Resonance Imagery for Enhanced Brain Tumor Diagnosis

    Get PDF
    Brain tumor detection and its analysis are essential in medical diagnosis. The proposed work focuses on segmenting abnormality of axial brain MR DICOM slices, as this format holds the advantage of conserving extensive metadata. The axial slices presume the left and right part of the brain is symmetric by a Line of Symmetry (LOS). A semi-automated system is designed to mine normal and abnormal structures from each brain MR slice in a DICOM study. In this work, Fuzzy clustering (FC) is applied to the DICOM slices to extract various clusters for di erent k. Then, the best-segmented image that has high inter-class rigidity is obtained using the silhouette fitness function. The clustered boundaries of the tissue classes further enhanced by morphological operations. The FC technique is hybridized with the standard image post-processing techniques such as marker controlled watershed segmentation (MCW), region growing (RG), and distance regularized level sets (DRLS). This procedure is implemented on renowned BRATS challenge dataset of di erent modalities and a clinical dataset containing axial T2 weighted MR images of a patient. The sequential analysis of the slices is performed using the metadata information present in the DICOM header. The validation of the segmentation procedures against the ground truth images authorizes that the segmented objects of DRLS through FC enhanced brain images attain maximum scores of Jaccard and Dice similarity coe cients. The average Jaccard and dice scores for segmenting tumor part for ten patient studies of the BRATS dataset are 0.79 and 0.88, also for the clinical study 0.78 and 0.86, respectively. Finally, 3D visualization and tumor volume estimation are done using accessible DICOM information.Ministerio de Desarrollo de Recursos Humanos, India SPARC/2018-2019/P145/SLUniversidad Polit茅cnica de Tomsk, Rusia RRSG/19/500

    An efficient ensemble VTOPES multi-criteria decision-making model for sustainable sugarcane farms

    Get PDF
    漏 2019 by the authors. The role of Information Technology based decision models for sustainable agriculture has gained immense prominence in recent years. Ranking of agriculture farms based on their yield plays a vital role in sustainable agriculture. In this work, an ensemble decision-making model, namely VIKOR (Vlsekriterijumska Optimizacija I Kompromisno Resenje), TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), entropy, and standard deviation (VTOPES), is proposed for ranking the sustainable sugarcane farms. VTOPES system model comprises of four significant steps: (i) determination of significance scores of the sub-parameters, (ii) transformation of sub-parameter sequences into main parameter values, (iii) computation of significant scores of main parameters, and (iv) generation of assessment values and deploying it for ranking the sugarcane farms. The ranking results of the proposed VTOPES model are compared with the ranking patterns obtained from five years average yield data acquired from the selected sugarcane farms. Moreover, the outcomes of the VTOPES model are also compared with other prevalent methods. Subsequently, Spearman's rank correlation method is applied for evaluating the impact of correlation of VTOPES ranks in comparison with the average yield ranks. Thus, it can be noticed that the empirical results of the VTOPES model provide reliable and sustainable results. Therefore, it suffices to be a sustainable decision model for any problem where multiple parameters are involved

    Deep belief network-based approach for detecting Alzheimer's disease using the multi-omics data

    No full text
    Alzheimer's disease (AD) is the most uncertain form of Dementia in terms of finding out the mechanism. AD does not have a vital genetic factor to relate to. There were no reliable techniques and methods to identify the genetic risk factors associated with AD in the past. Most of the data available were from the brain images. However, recently, there have been drastic advancements in the high-throughput techniques in bioinformatics. It has led to focused researches in discovering the AD causing genetic risk factors. Recent analysis has resulted in considerable prefrontal cortex data with which classification and prediction models can be developed for AD. We have developed a Deep Belief Network-based prediction model using the DNA Methylation and Gene Expression Microarray Data, with High Dimension Low Sample Size (HDLSS) issues. To overcome the HDLSS challenge, we performed a two-layer feature selection considering the biological aspects of the features as well. In the two-layered feature selection approach, first the differentially expressed genes and differentially methylated positions are identified, then both the datasets are combined using Jaccard similarity measure. As the second step, an ensemble-based feature selection approach is implemented to further narrow down the gene selection. The results show that the proposed feature selection technique outperforms the existing commonly used feature selection techniques, such as Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Correlation-based Feature Selection (CBS). Furthermore, the Deep Belief Network-based prediction model performs better than the widely used Machine Learning models. Also, the multi-omics dataset shows promising results compared to the single omics
    corecore